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Abstract

In this paper, we develop a theory for diffusion and flow of pure sub-critical adsorbates in microporous activated carbon over a wide
range of pressure, ranging from very low to high pressure, where capillary condensation is occurring. This theory does not require any
fitting parameter. The only information needed for the prediction is the complete pore size distribution of activated carbon. The various
interesting behaviors of permeability versus loading are observed such as the maximum permeability at high loading (occurred at about
0.8–0.9 relative pressure). The theory is tested with diffusion and flow of benzene through a commercial activated carbon, and the agreement
is found to be very good in the light that there is no fitting parameter in the model. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper addresses a theory about the diffusion and flow
of adsorbing vapors through activated carbon. Work in the
literature have assumed that the transport mechanism is that
composing of pore volume diffusion (Knudsen) diffusion,
viscous flow and surface diffusion. The first two processes
are relatively well studied and understood, while the process
of surface diffusion is not fully understood, despite many
work have discussed and reviewed this aspect. Among these
work, may different models have been proposed to describe
the surface transport of adsorbed molecules. Some are based
on the thermodynamics argument such as the Darken model
and its many variants, some of which account for the surface
heterogeneity [8–11,21,25,26,32,46], while a few have as-
sumed hydrodynamics model [19] and some structural mod-
els for activated carbon [13]. The reasons for our lack of full
understanding of the surface diffusion are as follows:

1. The activated carbon surface is very complex to be ide-
alized as a “perfect” surface.

2. Adsorbed molecules are not perfectly located on a sur-
face, where the usual concept of hopping could be appli-
cable.

Activated carbon is known for its strong heterogene-
ity, and one factor that contributes to this is the pore size
distribution and pore topology. For adsorption equilibrium at
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relative low pressure, only the distribution of the micropores
is sufficient to study the adsorptive capacity as adsorption on
mesopore and macropore’s surfaces is not significant. Dis-
tribution of the mesopores and larger pores is only needed
when one is interested in the adsorption over the region
where capillary condensation occurs at high pressure. For
adsorption kinetics, however, the complete pore size distri-
bution is necessary for the full description of mass transfer
from very low pressure to high pressure where capillary con-
densation is occurring. Pore volume diffusion and viscous
flow are dominating in macropores and mesopores, while
the surface diffusion is dominating in the micropores and
mesopores. We will discuss more about the nature of surface
diffusion in activated carbon as the term surface diffusion
is somewhat misleading in the context of activated carbon.
This is very understandable as surface is not well defined
in activated carbon and the usual concept of sub-monolayer
surface coverage for the applicability of the surface diffusion
does not apply to activated carbon as we shall show later.

The diffusive nature of mass transfer is expected to dom-
inate at very low pressure, while the hydrodynamics will
control when the capillary condensation has occurred at
high pressures. In between one would expect the combi-
nation of diffusion and hydrodynamic flow will contribute
to the overall mass transfer through the porous medium.
The complication of all this is the complex structure of
the porous medium, as well as the different behaviors of
different flow and diffusion mechanisms. The topology is
important in controlling of the flow, especially in the region
of condensation where partial condensation is some pore
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Nomenclature

A pre-exponential coefficient of Eq. (2)
C coefficient of the BET equation
Cp coefficient of then-BET equation for

adsorption in pores
Cs coefficient of then-BET equation

for adsorption onto a flat surface
d characteristic pore dimension
n number of adsorbate layers
N Avogadro’s number
P system pressure
P0 relative pressure
Q heat of adsorption
Qp heat of adsorption into a pore
Qs heat of adsorption onto a flat surface
r pore radius
rk pore radius from the Kelvin equation
rmax upper limit of the mesopore range
R universal gas constant
S surface area
t statistical thickness of the adsorbate film layer
tm thickness of a single layer of the adsorbate
T temperature
vM liquid molar volume
V pore volume
Vm monolayer volume

Greek symbols
γ liquid surface tension
εl reduced heat of liquefaction
�εl the excess of the reduced liquefaction heat
ε1 reduced energy of adsorption
ε12 nitrogen–carbon interaction energy
θ liquid–solid contact angle
σ 12 collision diameter of the nitrogen–carbon

interaction

may block the flow. This aspect has been addressed by
many authors, notably Carman and Raal [5–7], Flood et al.
[16–18], Debye and Cleland [12], Eberly and Vohsberg [14],
Hwang and co-workers [28,39], Okazaki and co-workers
[33,40], Haynes and Miller [20], Tsujikawa et al. [41],
Abeles et al. [2], Uhlhorn et al. [44], Yang and co-workers
[9,38], Petropoulos [36], Petropoulos and Papadopoulos
[34,35], van der Zanden and co-workers [1,45] and Kanel-
lopoulos and co-workers [24,27,42,43]. Many of these work
deal with only mesoporous solids, and none of them con-
sider the enhancement of adsorption and its consequence in
the diffusion and flow from very low pressure to high pres-
sure where capillary condensation is occurring. What we
shall address in this paper is the flow of sub-critical vapors
for microporous activated carbon as this is important in the
area of environmental control of removing solvents from air.

2. Theory

In the development of this theory, we shall derive the basic
equations applicable for a single pore, and then obtain the
overall equation in terms of the assumed known pore size
distribution and assumed random pore structure. The pore
geometry is considered as slit shaped. This choice is chosen
purely because real pores have arbitrary shape and size, and
they do not strictly conform to slit or cylinder. Only in well
ordered structures such as zeolite and MCM-41 like solids
pore shapes are clearly defined. Another reason for choosing
slit shape pore is because micropores in activated carbon
are more or less slit-shaped, and it is convenient from the
modeling point of view is to retain that shape for all pores.

Adsorption of sub-critical fluids in pores will occur in
stages, and different mechanisms occur when pressure is in-
creased from vacuum to vapor pressure. The different mech-
anisms for diffusion and flow in a pore of half widthr are
shown in Fig. 1. When the pressure is very low, adsorption
mainly occurs on the surface. Here, we have what is called
the sub-monolayer adsorption, and the movement of these
adsorbed molecules is that of diffusive nature, the process
of which can be regarded as hopping of adsorbed molecules
from a low potential energy point to another low poten-
tial energy point, crossing an energy barrier. The process
is called activated surface diffusion. When the pressure is
increased to some pressurePm (usually about one-tenth of
the vapor pressure) a monolayer of adsorbate molecules is
formed on the surface, and the process of movement is still
that of surface diffusion. When pressure is increased beyond
Pm, multilayers of adsorbate are formed on top of the first
layer. The movement of the first layer is still that of surface
diffusion, but the rate is diminishing due to the decrease in
the surface concentration of the first layer. The movement of
liquid film above the first layer is that of hydrodynamic in
nature. These two processes will occur in parallel, and obvi-
ously the contribution from the surface diffusion of the first
layer will become less significant compared to the hydro-
dynamic flow of higher layers when pressure is increased.
When the pressure is approaching a threshold pressureP∗,
the capillary condensation will occur and liquid adsorbate
will fill completely the whole volume of the pore. Now we
have the capillary condensate flow.

Before describing the fluxes of these processes, we need
to present the definitions of various concentration and the
driving force for diffusion and flow.

2.1. Equilibrium between the two phases

This section will consider the derivation of the adsorbed
phase pressure as a function of the gas phase. This is achiev-
able by assuming the two phases are in equilibrium with
each other, then we have the following equality of chemical
potentials [3]:

µA = µG (J/mol) (1a)
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Fig. 1. Different regimes of diffusion and flow of adsorbate molecules through a pore.

or the differential changes in chemical potentials are the
same

dµA = dµG (1b)

Here the subscripts A and G are for adsorbed and gas phases,
respectively.

Under isothermal conditions, the change of the chemical
potential is simply the molar volume of that phase times the
change in the pressure of that phase, that is

V̄A dPA = V̄G dP (2)

Therefore under equilibrium the change in pressure in the
adsorbed phase is related to the change in pressure in the

gas phase as written below

dPA

dz
= V G

V A

dP

dz
(3)

Assuming the ideal gas behavior, the gas phase molar volume
is related to the pressure asV G = RT/P , and the adsorbed
phase behaves like a liquid phase, that isV A is the liquid
molar volumevM (m3/mol), then the change in pressure in
the adsorbed phase is

dPA

dz
= RT

vMP

dP

dz
= RT

vM

d lnP

dz
(4)
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This change in liquid phase pressure is much larger than the
change in the gas phase because the liquid molar volume is
much smaller than the gaseous molar volume. To show an
example, we take an example ofn-butane at 273 K. At this
temperature the vapor pressure is 1.04× 105 Pa, the liquid
density is 600 kg/m3. For a mean pressure of 0.4P0, the
change in liquid pressure is about 560 times greater than the
change in the gas phase pressure, showing that the driving
force in the liquid phase is far greater than that in the gas
phase. One must also note that despite the liquid driving
force is greater, the resistance to flow is also greater, for
example the viscosity in the gas phase is of the order of
1 × 10−5 Pa s and that for liquid phase is 1× 10−3 Pa s.

2.2. Diffusion flux of the first adsorbed layer

Surface diffusion, by its strict definition, represents the
mobility of adsorbed molecules below monolayer coverage.
The surface diffusion flux is driven by a chemical potential
gradient multiplied by the surface concentration per unit sur-
face area. Under local equilibrium between the two phases,
the mass transfer of the adsorbed layer (below the mono-
layer coverage) is assumed to be driven by the gradient of
the chemical potential, that is,

Js = −LCs
∂µ

∂z
(mol/m s) (5)

whereL is the mobility coefficient. The surface flux is de-
fined as mole transported per unit time and per unit perime-
ter across which the mass is transferred, and the surface
concentration is in mole per unit surface area. With the def-
inition of the corrected surface diffusivityD0

s = LRT, the
surface diffusion flux equation is

Js = −D0
s
Cs

P

∂P

∂z
(mol/m s) (6)

in which we have takenµ = µ0 + RTlnP . The corrected
diffusivity may depend on concentration, due to a variation
in the average mobility with concentration, with disorder,
with energy barrier for migration [23]. In the absence of this
information, we will consider it as concentration indepen-
dence. Knowing the flux equation, we can obtain the velocity
(flux per unit concentration) of the adsorbed molecule as

vs = −D0
s

1

P

∂P

∂z
(m/s) (7)

To derive the mass transfer, we need to introduce a new pa-
rameter to describe the system. This parameter is the density
function for the cross-sectional area. We denote itg(r) with
g(r) dr being the differential cross-sectional area of pores
having half width betweenr andr + dr. If we assume a slit
geometry for pores (applicable for small pores in activated
carbon), then the total periphery for pores having half width
in the range ofr andr + dr is given by

g(r)dr

r
(m) (8)

Therefore, the differential rate of mass transfer contributed
by the surface diffusion in pores having half width between
r andr + dr is the product of the periphery and the surface
diffusion flux, that is

dMs = −g(r)dr

r

D0
sCs

P

∂P

∂z
(mol/s) (9)

We have derived the rate of mass transfer contributed by
the surface diffusion. We now consider next the derivation
of the flux in the case where there is liquid film (multiple
layers of adsorbate molecules) on the surface. The flux in
this case will be contributed by the liquid condensate film
with surface diffusion (slip) at the surface.

2.3. The velocity and flux of the condensate film

We now study the flow of condensate film on a surface by
considering a pore of half widthr measuring from the center
of the pore to the surface of the pore wall atoms. This is the
physical pore half width. Let “t” be the statistical thickness
of the adsorbed film on the solid surface. If we assume that
the film behaves as liquid, the force balance over a thin
element of the film will give the following equation in terms
of the shear stress:
d

dx
(xsτxz) = −∂PL

∂z
xs (10)

wherez is the distance along the pore,s the shape factor,
being 0 for slit shape and 1 for cylinder. The liquid pressure
gradient is�PL/L. At the liquid–gas interface, we shall
assume that the shear is negligible, that is,

x = a, τxz = 0 (11a)

wherea = r − t . At the liquid–solid interface, there will be
slip along the surface and this slip is basically due to the
mobility of the adsorbed molecules adjacent to the surface
(Eq. (7)), that is,

x = r, vz = −D0
s
∂ lnP

∂z
(11b)

If we assume that the liquid film behaves like a
Newtonian fluid (that isτxz = −µL dvz/dx), the force
balance of Eq. (10) can be written in terms of the axial
velocity vz. Solving this resulting equation subject to the
boundary conditions (Eqs. (11a) and (11b)), we derive the
following velocity distribution across the film (assuming
that the viscosity does not vary across the film):

vz(x) = −
{
r2

2µL

[
1 −

(x
r

)2
]
∂PL

∂z
− r(r − t)

µL

×
[
1 −

(x
r

)] ∂PL

∂z
+D0

s
∂ lnP

∂z

}
(12)

from which we can calculate the mean velocity as follows:

〈vz〉 = −
(
t2

3µ

∂PL

∂z
+D0

s
∂ lnP

∂z

)
(13)



H.D. Do, D.D. Do / Chemical Engineering Journal 84 (2001) 295–308 299

The last term is the slip velocity due to the motion of the first
layer. When the pore is completely filled with liquid, that is
at pressure greater than the capillary condensation pressure
the mean velocity is

〈vz〉 = −
(
r2

3µL

∂PL

∂z
+D0

s
∂ lnP

∂z

)
(m/s) (14)

where the statistical thickness of the film has been replaced
by the pore half width.

Knowing the film velocity as given in Eq. (13), the molar
flow rate of the liquid film per unit cross-sectional area of
the liquid film is

J =
(

1

vM

)
〈vz〉 (mol/m2 s) (15)

wherevM is the liquid molar volume. For pores having radii
betweenr andr + dr, the fraction of the pore cross-section
occupied by the liquid condensate film is (t/r)g(r) dr.
Thus the rate of mass transfer by the liquid condensate
is

dML = −
(
t

r

)(
g(r)dr

vM

)

×
(
t2

3µL

∂PL

∂z
+D0

s
∂ lnP

∂z

)
(mol/s) (16)

Written in terms of the pressure gradient in the gaseous
phase (Eq. (4)), the above equation will become

dML= −
(
g(r)dr

r

)(
t3

3µL

RT

v2
M

+D0
s
t

vM

)
∂ lnP

∂z
(mol/s)

(17)

We see that the termt/vM is the surface concentration ift is
statistically less than the thickness of one monolayer. Com-
paring this equation with that for surface diffusion (Eq. (9)),
we see that the mass transfer rate of the adsorbed phase can
be combined in one form

dML = −
(
g(r)dr

r

)

×
(
H(t − σ)(t − σ)3

3µL

RT

v2
M

+D0
sCs

)

×∂ lnP

∂z
(mol/s) (18)

where the surface concentrationCs is defined as

Cs =




t

vM
for t < σ

σ

vM
for t > σ

(19)

Hereσ is the thickness of one monolayer. In Eq. (18),H(·)
is the Heaviside step function, where we assume that only
the molecules in the second and higher layers contribute to
the flow of viscous nature. The first layer flows according

to the diffusive action. The above equation reduces to the
surface diffusion equation (Eq. (9)) when the thickness is
less than the monolayer thickness.

2.4. The gaseous flux

We have derived the mass transfer rate, contributed by
the liquid condensate film. Because of the reduction in the
cross sectional area due to the presence of condensate film,
the mass transfer in the gas phase due to Knudsen diffusion
and viscous flow processes is given by

dMG = −
[
(r − t)g(r)dr

r

]

×
[
DK (r − t)

RT
+ B0(r − t)P

µGRT

]
∂P

∂z
(20)

whereµG is gas phase viscosity,DK the Knudsen diffusivity,
andB0 the viscous flow parameter for gaseous flow, and they
are given by for slit geometry [31]:

DK (r) = r

2

√
8RT

πM
, B0 = r2

3
(21)

The first factor in the RHS of Eq. (20) is the fraction of
area that contains only free molecules in pores having half
width betweenr andr + dr. In principle, this equation re-
mains valid when the film thickness is less than the half
width, that is t < r. But in fact, due to the pore filling
or capillary condensation, the gaseous mass transfer will
be zero when the effective pore half width is less than
the critical half width, dictated by the capillary condensa-
tion equation. This capillary condensation will be addressed
next, together with equations for the calculation of the film
thickness.

2.5. Film thickness

We have developed some basic ingredient equations for
the mass transfer rate contributed by the liquid condensate
film and the gas phase when the condensate film thickness is
known. Now we will derive equations for the film thickness
as a function of pressure, and here we shall allow for the en-
hancement on the film thickness due to the enhanced inter-
action between pore surfaces and the adsorbate molecules.

The theory is developed based on the premise that the
knowledge about the adsorption on a flat surface can be ex-
tended to describe the adsorption occurring in a pore. This
approach assumes that the surface chemistry of the flat sur-
face and the surface of the pore walls are similar so that
the pore dimension is the only factor that makes adsorp-
tion in the pore different from that occurring on a flat sur-
face. We now review basic equations for a flat surface and
then propose proper equations applicable for pores of finite
dimension.
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2.5.1. Single flat surface
Adsorption on a flat surface by a sub-critical fluid gives

rise to layering of molecules on the surface, and if the relative
pressure is about 0.1 or greater, multilayers of adsorbate
molecules will be formed. This has been very well described
by the classical BET equation as given below [4]

V = Vm

[
CBETP

(P0 − P)[1 + (CBET − 1)(P/P0)]

]
(m3/kg)

(22)

or in terms of the statistical adsorbed film thickness:

t = σ

[
CBETP

(P0 − P)[1 + (CBET − 1)(P/P0)]

]
(m) (23)

whereσ is the thickness of a monolayer coverage. The co-
efficient CBET in the above equation is a measure of the
adsorptive strength and is given by

CBET = Aexp

(
Q

RT
− λ

RT

)
(24)

Hereλ is the heat of liquefaction (J/mol), andQ the energy
of interaction between the first layer of adsorbate with the
surface. For an energetic homogeneous flat surface this en-
ergy of interaction is a constant. However, when we deal
with pores having dimension comparable to that of adsor-
bate molecule, which is what we are doing here, this energy
is a function of pore size because of the overlapping of the
potential fields exerted by the two sides of the pore [15].
This energy of interaction is greater when the pore size gets
smaller, but when the half width (defined as from the pore
center to the center of surface atoms) is about equal to the
collision diameter the interaction energy will be decreased
owing to the strong repulsive forces caused by the greater
proximity of the two walls of the pore. WhenCBET is greater
in pores, the amount adsorbed will be greater and hence the
liquid film will be thicker compared to the single flat surface.

2.5.2. Adsorption in a confined space of slit geometry
Adsorption in a confined space is in a way similar to that

on a flat surface. The differences are that the number of
layers allowable in the pore (n) is finite, and the constant
CBET is enhanced due to the overlapping of the potential
fields exerted by the two opposite walls of the slit pore. Al-
though, strictly speaking we should allow onlyn layers in
the adsorption BET-type isotherm equation, we can still use
the classical BET equation (Eq. (23)) for the calculation of
the film thickness. This does not cause any significant errors
as the pore filling or capillary condensation mechanism will
take over well before the multilayering occurs ton layers.
Not only theCBET constant is enhanced in pores, the gaseous
pressure in pore is also enhanced, again due to the overlap-
ping of the potential field. It can be calculated as follows:

Ppore = P exp

(
−αE0

RT

)
(25)

where E0 is the potential energy when the adsorbate
molecule is put in the center of the pore. Here, we intro-
duce the factorα to account for the fact that not all free
molecules in the pore are subject to the same potentialE0.

The coefficientCBET is regarded as constant for a flat
surface, but for pores of finite dimension, this constantCBET
varies with the energy of interactionQ. SinceQ is a function
of the pore half width, the coefficientCBET is also a function
of pore size. Assuming the pre-exponent coefficientA does
not change with pore size, we write

CBET,s = Aexp

(
Qs

RT
− λ

RT

)
(26a)

CBET,p(r) = Aexp

(
Qp(r)

RT
− λ

RT

)
(26b)

the relationship between the constantCBET for a flat surface
and that for a pore is

CBET,p(r) = CBET,s exp

(
Qp(r)−Qs

RT

)
(27)

where the subscripts p and s denote for pore and flat sur-
face, respectively. The BET equation (Eq. (22)) and the cor-
responding film thickness (Eq. (23)) for a pore of half width
r can now be calculated using the above value ofCBET,p(r)
and the pressureP being replaced byPpore. To calculate the
BET constant for a pore, we have to calculate the heat of
adsorption in a pore. Heat of adsorption can be calculated as
the decrease in the potential energy of the adsorbate when
transferred from the bulk gas phase to the adsorbed state.
Thus, theoretically the heat of adsorptionQ at zero loading
can be taken as the depth of the potential energy profile of
the first adsorbed molecules. This minimum can be obtained
by summing all the pairwise interaction energies of the form
of Lennard–Jones 12-6 between the adsorbate molecule and
the surface atoms of the two walls. By assuming a config-
uration for the two surfaces for the carbon wall [29], we
can readily determine the minimum potential energy as a
function of pore size. The potential enhancement is highest
when the pore half width is approximately equal to the col-
lision diameter of the adsorbate and the surface atom. The
exact pore half width at which the enhancement is greatest
depends on the pore configuration chosen.

2.5.3. Pore filling or capillary condensation process
We have mentioned before that except for pores of very

small dimension, the layering of molecules on the two walls
will not meet at the center because before this could hap-
pen the capillary condensation or pore filling will occur. We
shall assume here that the mechanism of pore filling in mi-
cropores and that of capillary condensation in mesopores are
the same. The difference in these two is the enhancement of
the gaseous pore pressure and the enhancement of the film
thickness in micropores as discussed in the last section. The
pore filling or capillary condensation phenomenon can be
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described by the following equation, written below for a slit
shaped geometry [22,23]:

rk(P )− t (P, r)− σs

2
= − γ vM

RTln(P/P0)
(28)

whereσ s is the collision diameter of the surface atom,γ
the surface tension (N/m), andvM the liquid molar volume
(m3/mol). This equation is argued to be applicable for not
just mesopores but also micropores as well [30], where we
argued that the failure of the Kelvin equation in predicting
the diameter of smaller pores rests mostly on the incapability
of the estimation of the statistical adsorbed film thicknesst.
This enhancement in the film thickness has been addressed
in the last section. Combining Eqs. (28) and (23), we can
determine the threshold pressure as a function of pore half
width. In general the larger is the pore, the larger is the con-
densation pressure. But this is a general rule, as for very
small sub-micropores where the repulsive forces are very
strong and the condensation pressure would be very high
in those pores as well. Most of these pores are usually in-
accessible to adsorbate molecules, and the fraction of these
pores is usually very small compared to other pores; there-
fore, these small pores will be ignored from our work.

Solving the pore filling equation, we will get the pore
filling pressure as a function of the pore half width, which
is typically shown in Fig. 2 for benzene in activated carbon
at 303 K. We see that when the pressure is less thanP∗,
there will be no condensation in any pore. As the pressure
is greater thanP∗, there will be two solutions for the pore
half width. We denote themr1 andr2, and pores having radii
betweenr1 and r2 will be filled with adsorbate molecules.
This threshold pressureP∗ is usually very low, usually too
low to practically measure.

2.6. The total mass transfer and permeability

We have now derived all the necessary equations for the
development of total mass transfer equation. Assuming all

Fig. 2. Pore filling pressure of benzene at 303 K versus pore half width.

the pores are arranged in random, the total mass transfer rate
for P < P ∗ is

M = −
{∫ ∞

0

(
g(r)dr

r

)(
D0

s
Cs

P

)
+
(
r − t

r

)
g(r)dr

×
[
DK (r − t)

RT
+ B0(r − t)P

µGRT

]}
∂P

∂z
(mol/s) (29)

which is just purely the sum of the surface diffusion and
pore Knudsen diffusion and gaseous viscous flow.

WhenP > P ∗, pore filling will occur in pores having
radii betweenr1 andr2. In such a case, the mass transfer rate
will be a summation of three terms. The first term is con-
tributed by pores having radii between 0 andr1, where lay-
ering is occurring, the second term is contributed by pores
having radii betweenr1 and r2, where all pores have been
filled. Finally, the last term is contributed by pores hav-
ing radii greater thanr2, where layering is occurring. The
equation is

M =−
{∫ r1

0

(
g(r)dr

r

)(
H(t−σ)(t−σ)3RT

3µLv
2
MP

+D0
s
Cs

P

)

+
(
r − t

r

)
g(r)dr

[
DK (r − t)

RT
+ B0(r − t)P

µGRT

]}

×∂P
∂z

−
{∫ r2

r1

(
g(r)dr

r

)(
(r − σ)3RT

3µLv
2
MP

+D0
s
Cs

P

)}

×∂P
∂z

−
{∫ ∞

r2

(
g(r)dr

r

)(
H(t − σ)(t − σ)3RT

3µLv
2
MP

+D0
s
Cs

P

)
+
(
r − t

r

)
g(r)dr

×
[
DK (r − t)

RT
+ B0(r − t)P

µGRT

]}
∂P

∂z
(30a)

Since the contribution of pores having radii smaller thanr1
is very small, we can neglect its contribution to the total
flux because not only adsorbate molecules have difficulty
in getting into those pores, the mobility is also expected to
be extremely low. Thus, the mass transfer equation can be
replaced by

M = −
{∫ r2

0

(
g(r)dr

r

)(
(r − σ)3RT

3µLv
2
MP

+D0
s
Cs

P

)}
∂P

∂z

−
{∫ ∞

r2

(
g(r)dr

r

)(
H(t−σ)(t−σ)3RT

3µLv
2
MP

+D0
s
Cs

P

)

+
(
r − t

r

)
g(r)dr

×
[
DK (r − t)

RT
+ B0(r − t)P

µGRT

]}
∂P

∂z
(30b)



302 H.D. Do, D.D. Do / Chemical Engineering Journal 84 (2001) 295–308

where we basically assume that pores having radii less
thanr2 will be filled with adsorbate, and those having radii
greater thanr2 have layering process occurring in them.

The total permeability is defined as

M = −ApB
∂P

∂z
(31)

whereAp is the total cross-sectional area, which is

Ap = 1

ε

∫ ∞

0
g(r)dr (32)

whereε is the initial total porosity, that is the ratio of all pores
volume to the particle volume. Thus, comparing Eqs. (30a),
(30b) and (31), we derive the following equation for the total
permeability:

B = ε

∫ ∞

0

{(
D0

s
Cs

P

)
+ (r − t)

×
[
DK (r − t)

RT
+ B0(r − t)P

µGRT

]}

×
(
α(r)dr

r

)
(mol/(m s Pa)) (33a)

for P < P ∗, and

B = ε

∫ r2

0

(
(r − σ)3RT

3µLv
2
MP

+D0
s
Cs

P

)(
α(r)dr

r

)

+ε
∫ ∞

r2

{(
H(t − σ)(t − σ)3RT

3µLv
2
MP

+D0
s
Cs

P

)

+(r − t)

[
DK (r − t)

RT
+ B0(r − t)P

µGRT

] }(
α(r)dr

r

)
(33b)

for P > P ∗. Hereα(r) dr is the fraction of pore having radii
betweenr andr + dr, and is defined as

α(r) = g(r)∫∞
0 g(r)dr

(33c)

Let us consider the extreme case of very low pressure
where the film condensate flow is negligible. For this case
the permeability is

B = ε

∫ ∞

0

{(
1

r

D0
sCs

P

)
+
[
DK (r)

RT
+ B0(r)P

µGRT

]}
α(r)dr

(mol/(m s Pa)) (34a)

For activated carbon, this permeability is very difficult to
measure as the pressure required for this to occur is very
low. Nevertheless, when this is feasible, this permeability
will be a constant as the ratio of the surface concentrationCs
to P is a constant (true Henry constant) and the viscous flow
contribution will be negligible compared to the Knudsen
flow at this very low pressure. Thus, the zero loading limit

of the permeability is (which should be very small):

B = ε

∫ ∞

0

{(
1

r
D0

sKs

)
+
[
DK (r)

RT

]}
α(r)dr

(mol/(m s Pa)) (34b)

At very high pressure (P approaching the vapor pressure
P0), the permeability is

B = ε

∫ ∞

0

(
(r − σ)3RT

3µLv
2
MP

+D0
s
Csm

P

)(
α(r)dr

r

)
(35)

We see that when the pressure is approaching the vapor
pressure, the permeability decreases with pressure. At the
vapor pressure, the limiting permeability is

B = ε

∫ ∞

0

(
(r − σ)3RT

3µLv
2
MP0

+D0
s
Csm

P0

)(
α(r)dr

r

)
(36)

The two extremes of the permeability indicate that the per-
meability is a constant at zero loading (as physically ex-
pected), and at very high loading the permeability decreases
with loading and approaches a limiting value as given in
Eq. (36). Since the permeability at zero loading is very small,
the pattern of the permeability versus pressure (or loading)
should be such that it is increased with loading, and when
the pressure is relatively high, the permeability will decrease
as governed by Eq. (35) and reaches a limiting value of
Eq. (36).

In terms of the dependence on adsorbate properties, we
observe that at zero loading the permeability (Eq. (34b)) is
approximately inversely proportional to the square root of
the molecular weight, because the Knudsen diffusivity is in-
versely proportional to the molecular weight and the surface
diffusivity are approximately inversely proportional to the
molecular weight (experimentally we have found that the
surface diffusivity decreases faster than 1/

√
MW [37]). If

the surface diffusion is very strong, then the permeability is
proportional to the slope of the adsorption isotherm at zero
loading. At very high loading, the mass transfer is domi-
nated by the liquid condensate flow and by surface diffusion
(Eq. (35)). The first contribution is inversely proportional
to the liquid phase viscosity, while the latter is inversely
proportional to the molecular weight. Usually at this high
loading, the contribution of the liquid condensate is greater
than that of the surface diffusion. Thus, the permeability is
inversely proportional to the liquid phase viscosity.

To ascertain the behavior of the permeability with load-
ing, we need to consider Eq. (33b). At low pressure, the
contribution of the second integral is more important than
the first one. We see that the Knudsen diffusion contribution
is a constant, the viscous flow increases with pressure (not
linearly due to the reduction of the pore volume area), and
the liquid condensate term increases very fast with pressure
due to the increase of(t − σ)3 much faster thanP. Thus
from the knowledge of low pressure and moderate pressure
and high pressure, one would expect the behavior of the per-
meability versus loading as shown schematically in Fig. 3.



H.D. Do, D.D. Do / Chemical Engineering Journal 84 (2001) 295–308 303

Fig. 3. Typical total permeability versus loading.

2.7. Mass balance equation

Having obtained the permeability in the last section, the
mass balance equation for a slab geometry is simply

∂

∂t
(ρpCT) = − ∂

∂z
(J ) (37)

whereCT is the volumetric total concentration, andJ the flux
per unit total cross-sectional area and is written explicitly in
terms of the pressure gradient and the permeability as

J = −B ∂P
∂z

(38)

gas permeability

adsorbed phase permeability
=



(r − t)[(DK (r − t)/RT)+ (B0(r − t)P/µGRT)]

(H(t − σ)(t − σ)3RT/3µLv
2
MP)+D0

s(Cs/P )
for r < r1 or r > r2

0 for r1 < r < r2

(43b)

whereB is defined in Eqs. (33a)–(33c). The volumetric total
concentration is given by

CT = ε

(
1

vM

){∫ r1

0

[
t (P, r)

r

]
α(r)dr

+
∫ r2

r1

α(r)dr
∫ ∞

r2

[
t (P, r)

r

]
α(r)dr

}
(39)

overall gas permeability

overall adsorbed phase permeability
=
∫∞

0 {(r − t)[(DK (r − t)/RT)+ (B0(r − t)P/µGRT)]}(α(r)dr/r)∫∞
0 {(D0

s(Cs/P ))}(α(r)dr/r)
(44a)

for P < P ∗, and

overall gas permeability

overall adsorbed phase permeability

=
∫∞
r2

{(r − t)[(DK (r − t)/RT)+(B0(r−t)P/µGRT)]}(α(r)dr/r)∫ r2
0 [((r − σ)3RT/3µLv

2
MP)+D0

s(Cs/P )](α(r)dr/r)+∫∞
r2

{(H(t−σ)(t−σ)3RT/3µLv
2
MP)+D0

s(Cs/P )}(α(r)dr/r)
(44b)

Steady state solution of the mass balance equation is simply

JSS = −B(P )∂P
∂z

≡ constant (40)

Integration of this equation subject to constant boundary
conditions:

z = 0, P = P1 (41a)

z = L, P = P2 (41b)

yields the following solution for the steady state flux:

JSS = 1

L

∫ P1

P2

B(P )dP (42)

3. Results and discussion

We have developed a theory for diffusion and flow in the
region of capillary condensation. Let us now consider the
relative contribution of gas and adsorbed phases toward the
total permeability. First, we consider the individual contri-
bution of each pore. ForP < P ∗, that is pressure is below
the pore filling pressure in any pore, the ratio of the gas
phase permeability to the adsorbed phase permeability is

gas permeability

adsorbed phase permeability

= (r − t)[(DK (r − t)/RT)+ (B0(r − t)P/µGRT)]

D0
s(Cs/P )

(43a)

WhenP > P ∗, this ratio is given by

Eqs. (43a) and (43b) show the relative contribution of the
gas phase to the adsorbed phase, and they are useful to see
this relative contribution in each pore. In general, one would
expect this ratio is large for large pore, and small for small
pore. Since the relative contribution varies from pore to pore,
the overall ratio of these contributions can be obtained from
Eqs. (33a)–(33c):
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Fig. 4. Permeability as a function of physical pore half width.

The typical behavior of the total permeability versus the
reduced pressure as shown in Fig. 3 exhibits an increase
with pressure, and then decreases when the pressure has
been sufficiently high. Such behavior has been observed by
Lee and Hwang, who studied flow of Freon-113 in micro-
porous Vycor glass. It is important that, with the proposed
theory presented in this paper, to provide a detailed contri-
bution of various processes on the overall behavior. First, we
investigate the dependence of the total permeability versus
the physical pore half width (surface to pore center). Fig. 4
shows such behavior for three levels of reduced pressure,
P/P0 = 0.1,0.5 and 0.8. The lowest level represents the
situation where adsorption occurs dominantly in small mi-
cropores. The middle level is for the situation where adsorp-
tion in mesopore starts to become noticeable, and the last
level is that where capillary condensation has achieved to a
significant degree. First we see that at low loading the per-
meability is dominated mainly by the micropores, and the
permeability is relatively low due to the low conductance of
the very small pore. Maximum permeability is achieved at
pores having half width of about 10 A. We note that the per-
meability for mesopores and macropores is practically very
small. This is due to the very low loadings in those pores as
well as the pressure is low enough to induce any significant
Knudsen flow or gaseous viscous flow. These are only sig-
nificant for pores having size greater than 10 000 A. When
the reduced pressure is 0.5, the permeability is now domi-
nated by large micropores and small mesopores. At this level
of pressure, all small micropores are completely filled with
adsorbate, and the contribution of these small micropores
towards the permeability decreases like 1/P (see Eq. (35)).
Thus the domination is by larger micropores or small meso-
pores. Again, the larger mesopores and macropores con-
tribute very little to the total permeability. When the reduced
pressure is increased to 0.8, the permeability increases sig-
nificantly from about 1× 10−7 to 4 × 10−7 mol/(m s Pa).
Such a fourfold increase is due to the transport of conden-
sate in the mesopores, which is resulted by the two factors:
(a) large density of adsorbate, and (b) high conductance of

mesopores compared to micropores. The conductance is de-
fined as the permeability per unit loading.

The general feature we observed in Fig. 4 is the low per-
meability over the mesopore region, ranging from about 80
to 500 A. This is quite significant to the tailoring of solids to
achieve high capacity as well as fast kinetics. The good solids
therefore are those that have high proportion of micropores
having half width of less than about 50 A and macropores
greater than 5000 A. Many good activated carbon, like the
one used in our laboratory, have micropores having size less
than 30 A and macropores having size greater than 4000 A.

To have a better picture of how permeability changes with
pressure, we plot in Fig. 5 the permeability versus pressure
for pores of different ranges. For micropores having mean
physical pore half width of 5 A, the total permeability de-
creases with pressure (Fig. 5a). This is due to the fact that
over the practical range of pressure,x > 0.01, these pores
are filled quickly with adsorbate molecules, and the perme-
ability for completely filled pore will decrease with pressure
like 1/P. For micropores having physical pore half width of
20 A (Fig. 5b, curve A), the permeability is approximately
constant for reduced pressure less than about 0.2, beyond
which it increases very fast with pressure (or loading). This
is due to the build-up of adsorbed layers in these pores,
which occurs over the region of reduced pressure from 0.2
to about 0.6. Increase in reduced pressure from 0.6 will re-
sult in a reduction of the permeability. This is due to the
complete filling of these pores, and again the permeability
of completely filled pores decreases withP like 1/P. We also
show in Fig. 5b, the permeability of small micropores (5 A)
and larger pores (500 and 3000 A) to compare the magnitude
of the permeability. This shows the importance of the per-
meability of the large micropores of 20 A. Fig. 5c shows the
permeability of large mesopores (500 A). Here, we see that
the Knudsen diffusion permeability dominates the overall
permeability until the liquid condensate in these pores has
sufficient thickness to contribute to the overall permeability.
This occurs at a reduced pressure of about 0.7. For pores
of this size, the gaseous viscous flow contribution is very
small. When pores are larger (3000 A), Fig. 5d shows that
the total permeability is dominated entirely by the Knudsen
and gaseous viscous flow. For pores of this size, the contri-
bution from the liquid condensate is negligible and this is
due to the very low adsorption in this type of pore.

The effect of variance of the pore size distribution is to
spread the permeability curve as shown in Fig. 6a and b for
micropores and mesopores, respectively.

We now test the theory with the total permeability of
benzene diffusing through an Ajax activated carbon, which
has the following properties: BET surface area of 1.2 ×
104 m2/kg, particle density 733 kg/m3, total porosity 0.71,
macropore porosity 0.3 and micropore porosity 0.41. The
mean macropore size is 8× 10−7 m. The pore size distribu-
tion of this activated carbon is shown in Fig. 7. This PSD is
required in the theory for the calculation of the permeability.
A particle (of length 4×10−3 m) was mounted between two
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Fig. 5. Permeability as a function of pressure: (a) micropore range(r = 5 A, σ = 1.25 A); (b) mesopore range(r = 20 A, σ = 5 A); (c) macropore range
(r = 500 A, σ = 125 A); (d) large macropore range(r = 3000 A, σ = 750 A).

reservoirs. The particle–reservoirs assembly was cleaned un-
der ultra-low vacuum (below 10−4 Pa) overnight, after which
the complete assembly was brought to the adsorption tem-
perature. Once this is achieved, pure vapor was dosed into
the system, and sufficient time is allowed for equilibrium to
achieve. Let this equilibrium pressure beP∗. The upstream
reservoir is then isolated from the particle and downstream
reservoir. A small amount of pure gas or vapor was then
added into the upstream reservoir to increase the pressure by
�P ∗ � P ∗. The isolation valve was then opened to allow
the diffusion and flow through the carbon particle to occur.
The total flux through the particle and the pressure difference
across the particle were measured. Once the steady state has

been achieved, the total permeability is calculated from

BT = JSS

�P/L
(45)

Once this is done for one level of pressureP∗, the system
pressure was brought to equilibrium at another pressure, and
then the same procedure was repeated until the permeabil-
ity curve versus loading can be generated. The steady state
flux JSS in Eq. (45) was determined from the measurement
of the downstream reservoir versus time. Carrying out the
mass balance around the downstream reservoir, we get

JSS = BT
P1 − P2

L
= V

ART

dP2

dt
(46)
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Fig. 6. Effect of variance on the permeability as a function of pressure.

whereV is the volume of the downstream reservoir,A the
cross-sectional area of the porous medium, andR the gas
constant. Solving this equation subject tot = 0, P2 = P ∗,
we get

ln

(
P1 − P ∗

0

P1 − P2(t)

)
=
(

ARTBT

VL

)
t (47)

Fig. 7. Pore size distribution of Ajax activated carbon.

Fig. 8. Adsorption isotherm of benzene on Ajax activated carbon at 313,
323 and 333 K.

Thus a plot of ln[(P1 − P ∗
0 )/(P1 − P2)] versus time will

yield a straight line passing through the origin with a slope
of (ARTBT/VL) from which the total permeability can be
calculated.

Adsorption isotherms of benzene were obtained from the
high accuracy volumetric apparatus. The results are shown
in Fig. 8. Using the theory presented in this paper, we calcu-
late the total permeability of benzene as a function of pres-
sure as shown in Fig. 9. The only parameter we need for
such simulation is the BET constant for benzene for a flat
surface, which was found independently in our laboratory as
100. The experimental data are also shown in Fig. 9 as sym-
bols. We see that the prediction, although does not match
the data perfectly, is very good in the light of the prediction
based on first principles as well as on fundamental parame-
ters, such as particle characteristics, like PSD, porosity, and
adsorbate properties, such as viscosity, collision diameter,
and interaction energy. The values of these parameters used

Fig. 9. Prediction of the benzene permeability versus experimental data.
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in the simulation of Fig. 9 are given below:

Collision diameter of benzene σff = 3.5 × 10−10 m
Collision diameter of carbon σss = 3.4 × 10−10 m
BET C constant for ben-
zene for flat surface

CBET = 100

Heat of adsorption for ben-
zene for flat surface

Q = 30 kJ/mol

Viscosity of liquid benzene at 303 K 7× 10−4 Pa s
Viscosity of benzene vapor at 303 K 8× 10−6 Pa s
Surface tension of benzene at 303 K 0.03 N/m
Liquid molar volume of benzene 8× 10−5 m3/mol
Vapor pressure of benzene at 303 K 16 kPa
Total porosity of activated carbon 0.71
Surface diffusivity 1× 10−11 m2/s

4. Conclusions

We have presented a detailed theoretical study of diffu-
sion and flow of sub-critical fluids in activated carbon. The
permeability is found to be dominated by pores having size
less than 20 A or greater than 4000 A. The former is by
flow of condensate, while the latter is by Knudsen diffusion
and gaseous viscous flow. The theory was tested with flow
of benzene through a commercial activated carbon, and the
agreement was found to be very good, in the light that there
are no fitting parameter in the model.
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